
1

PharmaSUG 2019 - Paper BP-286

One More Paper on Dictionary Tables and Yes, I Think it Is Worth Reading

Vladlen Ivanushkin, DataFocus GmbH

ABSTRACT

Before writing this paper on dictionary tables I made some research on what was already out there so
that I won’t duplicate someone else’s work. I found quite a number of papers, but I still decided to write
my own and to concentrate on how programmers can benefit from using dictionary tables in their
everyday life. In this paper I would like to share with you the tasks I actually faced during my work as a
statistical programmer and how using dictionary tables makes it so much easier to deal with them. There
is quite a variety of them from creating macros to programming STDMs.

INTRODUCTION

First question that arises is ‘What are dictionary tables?’. The easiest way to answer it is to look up the
SAS® support website which says:
‘DICTIONARY tables are special read-only PROC SQL tables or views. They retrieve information about
all the SAS libraries, SAS data sets, SAS system options, and external files that are associated with the
current SAS session.’
So as the readers probably know, the DICTIONARY tables can be accessed via the SQL procedure and
the information is stored in several tables grouped by specific categories.
DICTIONARY tables contain only current actual information, i.e. the information valid at the time of
accessing a particular table. Again, on this point the SAS support website says:
‘Note: SAS does not maintain DICTIONARY table information between queries. Each query of a
DICTIONARY table launches a new discovery process.’
Thus, comprehensiveness, ease of accessing and using make the DICTIONARY tables very valuable
source of information about the current SAS session. As the information stored in the tables is quite
diverse, starting from the SAS options and finishing with active macro variables and details about all the
accessible data sets, they can be used for various purposes. For example, TLFs programming, macro
generation, SDTM/ADaM creation etc.
Probably everyone has used DICTIONARY tables at least once to create some list of variables or to
retrieve some information about their datasets. But what if we go a bit further and use the information
stored in these tables to produce entire pieces of code? In other words, create dictionary tables data
driven code. Or what if we try involving DICTIONARY tables more in data set programming or macro
creation?
Let’s see how we can benefit from using DICTIONARY tables even more.

MANIPULATING VARIABLES AND ATTRIBUTES

Probably the most used and famous DICTIONARY table is called COLUMNS. Surprisingly, it contains
information about columns in all known tables. Screenshot 1 below shows a piece of the COLUMNS table
for SASHELP.CARS data set.

Screenshot 1. DICTIONARY.COLUMNS for SASHELP.CARS data set

One could think of many ways of utilizing this table but let’s focus on the attributes. Updating or assigning
attributes, copying or renaming variables, applying formats etc. are fairly common tasks everyone faces
all the time. And sometimes doing this could be a real struggle.

https://www.pharmasug.org/us/2019/papers.html#BP-286

2

DUPLICATING ATTRIBUTES

Imagine a situation when you need to duplicate a variable or a set of variables in your dataset and update
the names of those variables. Sounds easy enough, right? You just initialize the variables, create arrays
and let the DO loops(or just multiple assignment statements) do the work for you copying data from one
variable to another. But what if you need not only the data values to be copied but also all the attributes?
That sounds not that simple already. Of course, one could invent numbers of ways to do this, but how
much time will it take? And will it work for every case or only for this particular one? As the COLUMNS
table contains the metadata of all datasets from all assigned libraries, it is really simple and convenient to
use this source of information. Also, a great advantage of this is that you don't need to enter anything by
hand. So, no direct referencing of the variable attributes, just selecting the needed variables.
Let’s use the CARS data set from the SASHELP. To get access to the DICTIONARY tables it is required
to use the SQL which is also very convenient as it is possible to put information from multiple rows directly
to a macro variable with help of the SEPARATED BY statement.
The task is to create a copy of Weight, Wheelbase and Length variables along with the attached label.

 proc sql noprint;

 /*Construct code lines for each variable (i.e. NAME)*/

 select distinct catt(name, '_dupl=', name,

 '; attrib', ' '||name,'_dupl label="', label,'"')

 into :copy_vars_ds separated by ';'

 from dictionary.columns

 /*Select needed dataset and variables*/

 where libname='SASHELP' and memname='CARS'

 and upcase(name) in ('WEIGHT' 'WHEELBASE' 'LENGTH');

 quit;

So basically, the SQL procedure puts the following text (spacing is formatted for better overview):
into the macro variable called COPY_VARS.

Once the macro variable is created, it can be used in a data step:

 data cars_ds;

 set sashelp.cars;

 ©_vars_ds;

 run;

As the ATTRIB statement can be put anywhere within the DATA STEP, it is easy to use the SEPARATED
BY statement of SQL to generate lines of code for as many variables as needed (of course there is a limit
of macro variable length, i.e. 65,534 characters).
Of course, it is not necessary to include the copying of variables itself but in this case, it only makes the
process easier. Also, it does not matter whether to use a DATA STEP or the PROC SQL. Just some
adjustments need to be done:

 proc sql noprint;

 /*Construct code lines for each variable (i.e. NAME)*/

 select distinct catt(name,' as',' '||name,'_dupl label="',label,'"')

 into :copy_vars_sql separated by ', '

 from dictionary.columns

 /*Select needed dataset and variables*/

 where libname='SASHELP' and memname='CARS'

 and upcase(name) in ('WEIGHT' 'WHEELBASE' 'LENGTH');

 quit;

Output 1. Copying variables along with the attributes for DATA STEP

 Length_dupl=Length; attrib Length_dupl label="Length (IN)";

 Weight_dupl=Weight; attrib Weight_dupl label="Weight (LBS)";

 Wheelbase_dupl=Wheelbase; attrib Wheelbase_dupl label="Wheelbase (IN)

3

And now COPY_VARS_SQL macro-variables resolves to the following:

So it can be easily used in SQL:

 proc sql;

 create table cars_sql as

 select *, ©_vars_sql

 from sashelp.cars;

 quit;

After executing previous lines of code, the COLUMNS table will hold the newly created data sets
CARS_DS and CARS_SQL as Screenshot 2 shows. Note the highlighted lines, variables with _DUPL
suffix have the same label.

Screenshot 2. DICTIONARY.COLUMNS for CARS_DS and CARS_SQL

RENAMING VARIABLES

Another tedious task is renaming variables. Sure, I’m not talking about renaming one or two variables. For
example, when merging or joining two almost identical data sets sometimes we want to keep all the
variables from both. We run our SQL and get numerous WARNINGS that say

With the MERGE we might also get many problems and unexpected results. We will not get any errors or
warnings, but the results might be surprising as all the overlapping variables will be overwritten.
Overwriting columns is not a good idea neither in the DATA STEP nor in the SQL and should be avoided.
In this case the COLUMNS table allows us to make the renaming really easy, generic and reusable just in
a few steps. Another advantage of using this approach is that a programmer doesn’t even need to bother
checking data sets for overlapping variables.

Merging SASHELP.CARS with itself is just for demonstration purposes. The idea is to create the list for
renaming.

 proc sql noprint;

 select catx('=' , l.name , catx('_',"renamed", l.name))

 into :rename_list separated by ' '

 from

 Length as Length_dupl label="Length (IN)",

 Weight as Weight_dupl label="Weight (LBS)",

 Wheelbase as Wheelbase_dupl label="Wheelbase (IN)"

Output 2. Copying variables along with the attributes for SQL

WARNING: Variable <var name> already exists on file <your data set>.

Output 3. Overlapping variables WARNING

4

 /*Get all variable names from the first domain*/

 (select distinct name

 from dictionary.columns

 where libname="SASHELP" and memname="CARS") as l

 full join

 /*Get all variable names from the second domain*/

 (select distinct name

 from dictionary.columns

 where libname="SASHELP" and memname="CARS") as r

 on l.name=r.name

 where l.name=r.name;

 quit;

As data set options like WHERE, KEEP or DROP are not permitted while referring to a DICTIONARY
table, two separate queries are used to get the list of variables from each data set before joining. If there
is a need to merge more than two data sets, similar approach may also be applied with modifications.
The SQL puts the following text into macro variable RENAME_LIST:

Now the macro variable may be used in either SQL or DATA STEP to rename the overlapping variables:

 proc sql;

 create table work_cars

 as select *

 from sashelp.cars as l

 full join sashelp.cars(rename=(&rename_list)) as r

 on l.make=r.renamed_make and l.model=r.renamed_model

 and l.DriveTrain=r.renamed_DriveTrain;

 quit;

As a result we get a data set with two sets of same variables, both original names and with prefix
“renamed” - as Screenshot 3 shows:

Screenshot 3. DICTIONARY.COLUMNS for WORK_CARS for two sets of same variables

 Cylinders=renamed_Cylinders DriveTrain=renamed_DriveTrain

 EngineSize=renamed_EngineSize Horsepower=renamed_Horsepower

 Invoice=renamed_Invoice Length=renamed_Length MPG_City=renamed_MPG_City

 MPG_Highway=renamed_MPG_Highway MSRP=renamed_MSRP

 Make=renamed_Make Model=renamed_Model Origin=renamed_Origin

 Type=renamed_Type Weight=renamed_Weight Wheelbase=renamed_Wheelbase

Output 4. Code for renaming overlapping variables

5

Similar approach may be used for other scenarios depending on the task. For example, it is still handy to
use the COLUMNS table for renaming set of variables based on some name features (i.e. prefix or suffix)
or renaming all character (numeric) variables.

CREATING DECODES

The similar logic can be applied for creating ‘DECODE’ variables, i.e. creating new variables with applied
formats. For this example, let’s again use the same data set CARS. There we have two numeric variables
with specified formats. So the task is to get two additional ones but character and with applied format.
Also, it might be beneficial to update the labels, so let’s add ‘(C)’ to the labels.

 proc sql noprint;

 select catt(name, "_decod=vvalue(", name, "); label",

 ' '||name, "_decod='", strip(label)||"(C)';")

 into :create_decodes separated by ' '

 from dictionary.columns

 /*Select only numeric variable names with applied format*/

 where libname="SASHELP" and memname="CARS"

 and upcase(type)='NUM' and ^missing(format);

 quit;

The SQL creates a macro variable CREATE_DECODES which resolves to the following text:

As the original variables MSRP and Invoice don’t have any label specified, the new variables will just get
label ‘C’. Using the macro variable in a DATA STEP gives desired result as Screenshot 4 illustrates.

 data work_cars;

 set sashelp.cars;

 &create_decodes;

 run;

Screenshot 4. WORK_CARS with MSRP_decod and Invoice_decod added

In this or similar way many operations with variables and variable attributes can be generalized and
simplified. Of course, if you need to update label or format only for one variable it might not be worth it.
However, if we are talking about significant number of variables, why not just run a simple PROC SQL
which would do all the work for you instead of typing tens of identical lines of code.

MACRO PROGRAMMING

Clearly, updating variables and variable attributes using DICTIONARY tables could help in the macro
programming as well. But is there anything specific for the macro development in the DICTIONARY
tables? As one could already guess, the answer is “yes”. There is a table called MACROS. It contains
information about all resolved macro variables at the time of accessing the table, i.e. scope, name and
value.

There are things to keep in mind while working with this table. If you just open the corresponding view,
you will only see two types of SCOPE – GLOBAL and AUTOMATIC, i.e. no LOCAL. It can be explained
by the nature of DICTIONARY tables and LOCAL macro variables. I.e. the LOCAL macro variables exist

 MSRP_decod=vvalue(MSRP); label MSRP_decod='(C)';

 Invoice_decod=vvalue(Invoice); label Invoice_decod='(C)';

Output 5. Code for creating decode variables

6

only during macro execution and usually one can review the dictionary table view after the macro
executed.

If so, how can we catch those local macro variables while executing a macro? Obviously, during the
macro execution. Any DICTIONARY table can be saved in a temporary (or in a permanent) SAS data set.
It just has to be done during the macro execution, i.e. within the macro.

Let’s run this pretty useless macro

 %macro get_local_mvars(param1=param1, param2=param2, param3=param5);

 proc sql noprint;

 create table local_mvars_from_dt as select *

 from dictionary.macros;

 quit;

 %mend get_local_mvars;

 %get_local_mvars;

The only thing the macro does is saving MACRO table to a temporary data set in WORK. Screenshot 5
shows how this data set looks like:

Screenshot 5. DICTIONARY.MVARS during macro execution

So, in the SCOPE variable we get the macro name.

One of the aspects of good macro programming practice is harmonizing macro variables, and I believe
using the MACROS table here is a perfect solution. It is possible to get a list of all LOCAL macro variables
defined in the macro without any explicit references. Then one can decide what to do with them - upcase
all values, unquote, delete multiple blanks or whatever else is needed. By the way, while selecting only
required variables from the table, explicit denotation of the macro name is not necessary either. There is
a system macro variable called SYSMACRONAME which contains the name of currently executing
macro! Additional thing to note is that the SQL automatically creates some macro variables as it is visible
from Screenshot 5. Keep this in mind while selecting all required macro variable names.

 %macro dictionary_macros_usex(param1=, param2=, param3=);

 /*Get list of local macro variable names*/

 proc sql noprint;

 select name into :macro_param_list separated by ' '

 from dictionary.macros

 where scope="&sysmacroname" and name ^like 'SQL%';

 quit;

 /*Add & to each name to print resolved values to the log*/

 %put 1. Values before: %sysfunc(prxchange(s/^|\s+/ &/, -1,

7

 ¯o_param_list));

 /*Loop trough all macro variables*/

 %do __i=1 %to %sysfunc(countw(¯o_param_list));

 /*Temporary macro variable which holds macro variable

 Name with &i number*/

 %let __param=%scan(¯o_param_list, &__i);

 /*&__param resolves to actual macro variable name and &&&__param

 resolves to value of that macro variable*/

 %let &__param=%cmpres(%upcase(&&&__param));

 %end;

 %put 2. Values after: %sysfunc(prxchange(s/^|\s+/ &/, -1,

 %str(¯o_param_list)));

 %mend dictionary_macros_usex;

 %dictionary_macros_usex(

 param1 = woRd1

 , param2 = more WORDS

 , param3 = %nrstr(param1 - ¶m1%str(,) param2 - ¶m2));

The macro prints two lines in the log. Under the number one are the original parameter values. And under
the number two are the parameter values after upcasing, deleting duplicating blanks and unquoting. If
unquoting is not desired, then the %Q macro functions may be used instead which suppress unquoting of

previously quoted macro variables. The outcome of the macro execution is the following:

Thus, a small SQL query and a macro cycle with two lines of code save some time. And again, the piece
of code can be copied from one macro to another without a single update except the desired actions for
the macro variables. And all this thanks to the DICTIONARY tables and MACROS table in particular.

DATASETS UPDATING

For data sets there are also special DICTIONARY tables so no need to use the COLUMNS table for
retrieving data set level information. Table 1 below shows description of the tables.

DICTIONARY Table SASHELP View Purpose

MEMBERS VMEMBER Contains information about all data types (tables, views and
catalogs)

TABLES VTABLE Contains information about tables/datasets

Table 1. DICTIONARY.MEMBERS and DICTIONARY.TABLES

What can they be used for? As with the previous examples, it depends on programmers’ imagination
and/or given task. I would like to share a couple of common and useful examples I found helpful during
my work as a statistical programmer.

STACKING AND/OR UPDATING DATA SETS

Need to stack all datasets in a libname? What can be easier, just create a macro variable with list of all
data sets from that library. Keep in mind that if data sets from some other library than the WORK library
are to be stacked then the correct library referencing must be added:

 1. Values before: woRd1 more WORDS param1 - ¶m1%str(,) param2 –

 ¶m2

 2. Values after: WORD1 MORE WORDS PARAM1 - WORD1, PARAM2 - MORE WORDS

Output 6. Macro output

8

 proc sql noprint;

 select catx('.', libname, memname) into: ds_list separated by ' '

 from dictionary.members

 where libname='SASHELP' and memtype='DATA'

 and memname like 'R%';

 quit;

With this SQL query all data set names that start with letter ‘R’ along with the library reference are put into
the macro variable DS_LIST:

 Just in one step the required information is retrieved, the only step remaining is the stacking itself.

 data sashelp_r_stack;

 set &ds_list;

 run;

The example could be enhanced/modified by adding options for the data sets to be stacked, like WHERE,
KEEP, DROP etc.

Similarly to getting list of the desired data sets, some other examples might be applicable. Want to sort
some set of data sets (or do whatever else is needed)? A tiny macro and SQL query could make it.

 %macro sort_all(inlib=, ds_list=, outlib=WORK, sort_key=);

 %do i=1 %to %sysfunc(countw(&ds_list));

 %let ds=%scan(&ds_list, &i);

 proc sort data=&inlib..&ds out=&outlib..&ds;

 by &sort_key;

 run;

 %end;

 %mend sort_all;

 %sort_all(

 inlib = SDTM

 , ds_list = &sdtm_for_sort

 , outlib = WORK

 , sort_key = studyid subjid

)

WORKING WITH THE TABLES TABLE

Another useful example for dictionary tables crossed my mind when I needed to check my PROD run
against DEV run. The first thing one wants to check in such situation is that the number of observations
for the same data sets in the two libraries matches. Obviously, I did not want to do it manually, I wanted a
really quick and easy approach. Preferably, a piece of code I could rerun many times if needed. So, I was
quite happy when I checked DICTIONARY table called TABLES and noticed variable called NOBS –
“Number of Physical Observations”. This was exactly what I needed and only a small deal had to be done
– i.e. write corresponding SQL queries (by the way, did you know it can be done just in one step? Not
really a small one though).

For illustration purpose I used data sets which start with letter ‘A’ from the SASHELP library. They were
copied to WORK library and number of observations in one of them was changed.

 proc sql;

 create table nobs_compare

 as select coalescec(l.memname, r.memname) as memname,

 l.nobs as base_nobs, r.nobs as compare_nobs,

 l.nvar as base_nvar, r.nvar as compare_nvar,

 SASHELP.RENT SASHELP.RETAIL SASHELP.REVHUB2 SASHELP.ROCKPIT

Output 7. Data sets for stacking

9

 /*Filled as 1 if difference in number of variables or

 observations is found*/

 case

 when calculated base_nobs ne calculated compare_nobs

 or calculated base_nvar ne calculated compare_nvar then 1

 else .

 end as difference_found

 from

 /*Select data set names, number of variables and

 observations from the first lib*/

 (select memname, nobs, nvar

 from dictionary.tables

 where libname='SASHELP' and memtype='DATA'

 and memname like 'A%') as l

 full join

 /*Select the same for joining from the second lib*/

 (select memname, nobs, nvar

 from dictionary.tables

 where libname='WORK' and memtype='DATA'

 and memname like 'A%') as r

 on l.memname=r.memname;

 quit;

Basically, the SQL just joins two tables by MEMNAME keeping number of observations and variables.
Additional variable is created to indicate if there is any difference. Screenshot 6 shows the result, for the
highlighted row there is a difference in number of observations.

Screenshot 6. Observation and variable number comparison using DICTIONARY.TABLES

As alternative, similar result can be achieved with a DATA step and SASHELP.VTABLE view.

The TABLES table is very useful when data set level information is of interest. Besides information about
number of observations and number of variables it also contains other important details like date created,
longest label, longest variable name, encoding type etc.

SDTM/ADAM MAPPING

Some SDTM domains contain consolidated information and have to be derived using data from multiple
sources. As an example of such domains Comments (CO) and Subject Visits (SV) could be mentioned.
SV, for instance, provides a summary of subject’s visits also including Unscheduled ones. For
Unscheduled visits the visit numbers are often assigned based on closest scheduled visits (i.e. visits
according to protocol). To correctly assign all visit numbers, one needs to collect and summarize all the
applicable data. And this is where DICTIONARY tables could help as well. As variable information is
required, it makes sense to use the COLUMNS table to identify all data sets that contain VISIT and/or
VISITNUM. An SQL query below can help to find out what exact data sets have to be combined:

10

 proc sql;

 create table ds_with_vis as

 select distinct l.libname, l.memname, l.name

 from dictionary.columns as l

 join dictionary.columns as r

 on l.libname=r.libname and l.memname=r.memname

 and l.libname='RAW' and l.name like '%DT'

 and r.name in ('VISIT' 'VISITNUM');

 quit;

Such SQL query will help to find out not only data sets to be combined, but also will include the
information for date variables for each particular data source as Screenshot 7 shows. If the intention is to
create a reusable program which would work regardless of specific domains available, this might be really
handy.

Screenshot 7. RAW data sets with VISIT/VISITNUM

As describing SDTM creation techniques is not purpose of this paper I will not dig into further code
details. Based on the information from data set illustrated in Screenshot 7 a set of macro variables can be
created for each domain with a corresponding index:

 %put Data set name - &ds_name1, Vars to keep - &ds_varlist1, Vars to

 rename - &ds_renamelist1;

gives in the log:

The macro variables themselves can be used further in a DO loop, combining all datasets and performing
needed operations, like renaming. Screenshot 8 shows schematic possible outcome:

Screenshot 8. Combined Unscheduled visits data

 Data set name - OAD.EX, Vars to keep - EXSTDT EXSTDTC EXSTDTM,

 Vars to rename - EXSTDT=STDT EXSTDTC=STDTC EXSTDTM=STDTM

Output 8. Macro variables for combining VISIT-related data sets

11

This would give consolidated information of all VISIT-related domains with a common date variable which
could be used afterwards for merge with protocol visits and assigning numbers for the Unscheduled visits.

Similar approach can be applied to CO. Also, in ADaM world quite often we create derived parameters
which imply using multiple domains. If this is the case, try to think if a DICTIONARY table could help as it
might save some time and efforts. Such example could be deriving the last available date for a subject.
Obviously, to find that date, all domains that contain date information and are applicable for consideration
will need to be used. So why not use DICTIONARY.COLUMNS table here as well? As benefit, having
written the code just once a programmer will be able to use it over and over.

CONCLUSION

The examples shared in this paper utilize COLUMNS, TABLES, MEMBERS and MACROS dictionary
tables. From my experience they are most commonly used and usually cover 90% tasks a programmer
faces during day-to-day life (especially COLUMNS and MEMBERS). Examples provided in this paper are
the ones I found the most interesting, however there are many other ways these tables can be used to
optimize your programming. If you want to write data independent, flexible and reusable code? – don’t
forget about the DICTIONARY tables!

REFERENCES

SAS(R) 9.3 SQL Procedure User's Guide. “Accessing SAS System Information by Using DICTIONARY
Tables”.
http://support.sas.com/documentation/cdl/en/sqlproc/63043/HTML/default/viewer.htm#n02s19q65mw08g
n140bwfdh7spx7.htm

Eberhardt, Peter and Brill, Ilene. „How Do I Look it Up If I Cannot Spell It: An Introduction to SAS®
Dictionary Tables“
SAS Conference Proceedings: SUGI 35, Paper 259-31.
https://support.sas.com/resources/papers/proceedings/proceedings/sugi31/259-31.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Vladlen Ivanushkin
DataFocus GmbH
vladlen.ivanushkin@gmail.com

Any brand and product names are trademarks of their respective companies.

mailto:vladlen.ivanushkin@gmail.com

